Papers
Topics
Authors
Recent
Search
2000 character limit reached

Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs

Published 30 Dec 2017 in cs.CV | (1801.00077v1)

Abstract: Automatic synthesis of faces from visual attributes is an important problem in computer vision and has wide applications in law enforcement and entertainment. With the advent of deep generative convolutional neural networks (CNNs), attempts have been made to synthesize face images from attributes and text descriptions. In this paper, we take a different approach, where we formulate the original problem as a stage-wise learning problem. We first synthesize the facial sketch corresponding to the visual attributes and then we reconstruct the face image based on the synthesized sketch. The proposed Attribute2Sketch2Face framework, which is based on a combination of deep Conditional Variational Autoencoder (CVAE) and Generative Adversarial Networks (GANs), consists of three stages: (1) Synthesis of facial sketch from attributes using a CVAE architecture, (2) Enhancement of coarse sketches to produce sharper sketches using a GAN-based framework, and (3) Synthesis of face from sketch using another GAN-based network. Extensive experiments and comparison with recent methods are performed to verify the effectiveness of the proposed attribute-based three stage face synthesis method.

Citations (35)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.