A note on the equivalence of fractional relaxation equations to differential equations with varying coefficients (1712.10330v2)
Abstract: In this note we show how a initial value problem for a relaxation process governed by a differential equation of non-integer order with a constant coefficient may be equivalent to that of a differential equation of the first order with a varying coefficient. This equivalence is shown for the simple fractional relaxation equation that points out the relevance of the Mittag-Leffler function in fractional calculus. This simple argument may lead to the equivalence of more general processes governed by evolution equations of fractional order with constant coefficients to processes governed by differential equations of integer order but with varying coefficients. Our main motivation is to solicit the researchers to extend this approach to other areas of applied science in order to have a more deep knowledge of certain phenomena, both deterministic and stochastic ones, nowadays investigated with the techniques of the fractional calculus.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.