Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonlinear stability of self-gravitating massive fields (1712.10045v4)

Published 28 Dec 2017 in gr-qc and math.AP

Abstract: We consider the global evolution problem for Einstein's field equations in the near-Minkowski regime and study the long-time dynamics of a massive scalar field evolving under its own gravitational field. We establish the existence of a globally hyperbolic Cauchy development associated with any initial data set that is sufficiently close to a data set in Minkowski spacetime. In addition to applying to massive fields, our theory allows us to cover metrics with slow decay in space. The strategy of proof, proposed here and referred to as the Euclidean-Hyperboloidal Foliation Method, applies, more generally, to nonlinear systems of coupled wave and Klein-Gordon equations. It is based on a spacetime foliation defined by merging together asymptotically Euclidean hypersurfaces (covering spacelike infinity) and asymptotically hyperboloidal hypersurfaces (covering timelike infinity). A transition domain (reaching null infinity) limited by two asymptotic light cones is introduced in order to realize this merging. On the one hand, we exhibit a boost-rotation hierarchy property (as we call it) which is associated with Minkowski's Killing fields and is enjoyed by commutators of curved wave operators and, on the other hand, we exhibit a metric hierarchy property (as we call it) enjoyed by components of Einstein's field equations in frames associated with our Euclidean-hyperboloidal foliation. The core of the argument is, on the one hand, the derivation of novel integral and pointwise estimates which lead us to almost sharp decay properties (at timelike, null, and spacelike infinity) and, on the other hand, the control of the (quasi-linear and semi-linear) coupling between the geometric and matter parts of the Einstein equations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.