Papers
Topics
Authors
Recent
2000 character limit reached

A Unified Framework for Multiscale Modeling using the Mori-Zwanzig Formalism and the Variational Multiscale Method

Published 27 Dec 2017 in math.NA | (1712.09669v1)

Abstract: We describe a paradigm for multiscale modeling that combines the Mori-Zwanzig (MZ) formalism of Statistical Mechanics with the Variational Multiscale (VMS) method. The MZ-VMS approach leverages both VMS scale-separation projectors as well as phase-space projectors to provide a systematic modeling approach that is applicable to non-linear partial differential equations. Spectral as well as continuous and discontinuous finite element methods are considered. The framework leads to a formally closed equation in which the effect of the unresolved scales on the resolved scales is non-local in time and appears as a convolution or memory integral. The resulting non-Markovian system is used as a starting point for model development. We discover that unresolved scales lead to memory effects that are driven by an orthogonal projection of the coarse-scale residual and inter-element jumps. It is further shown that an MZ-based finite memory model is a variant of the well-known adjoint-stabilization method. For hyperbolic equations, this stabilization is shown to have the form of an artificial viscosity term. We further establish connections between the memory kernel and approximate Riemann solvers. It is demonstrated that, in the case of one-dimensional linear advection, the assumption of a finite memory and a linear quadrature leads to a closure term that is formally equivalent to an upwind flux correction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.