Papers
Topics
Authors
Recent
2000 character limit reached

Grassmannians and Pseudosphere Arrangements

Published 27 Dec 2017 in math.MG | (1712.09654v2)

Abstract: We extend vector configurations to more general objects that have nicer combinatorial and topological properties, called weighted pseudosphere arrangements. These are defined as a weighted variant of arrangements of pseudospheres, as in the Topological Representation Theorem for oriented matroids. We show that in rank 3, the real Stiefel manifold, Grassmannian, and oriented Grassmannian are homotopy equivalent to the analogously defined spaces of weighted pseudosphere arrangements. As a consequence, this gives a new classifying space for rank 3 vector bundles and for rank 3 oriented vector bundles where the difficulties of real algebraic geometry that arrise in the Grassmannian can be avoided. In particular, we show for all rank 3 oriented matroids, that the subspace of weighted pseudosphere arrangements realizing that oriented matroid is contractible. This is a sharp contrast with vector configurations where the space of realizations can have the homotopy type of any primary real semialgebraic set.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.