Papers
Topics
Authors
Recent
2000 character limit reached

Boundaries of sine kernel universality for Gaussian perturbations of Hermitian matrices (1712.08432v1)

Published 22 Dec 2017 in math.PR, math-ph, math.CA, math.CV, and math.MP

Abstract: We explore the boundaries of sine kernel universality for the eigenvalues of Gaussian perturbations of large deterministic Hermitian matrices. Equivalently, we study for deterministic initial data the time after which Dyson's Brownian motion exhibits sine kernel correlations. We explicitly describe this time span in terms of the limiting density and rigidity of the initial points. Our main focus lies on cases where the initial density vanishes at an interior point of the support. We show that the time to reach universality becomes larger if the density vanishes faster or if the initial points show less rigidity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.