Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The nonlinear heat equation involving highly singular initial values and new blowup and life span results (1712.08213v1)

Published 21 Dec 2017 in math.AP

Abstract: In this paper we prove local existence of solutions to the nonlinear heat equation $u_t = \Delta u +a |u|\alpha u, \; t\in(0,T),\; x=(x_1,\,\cdots,\, x_N)\in {\mathbb R}N,\; a = \pm 1,\; \alpha>0;$ with initial value $u(0)\in L1_{\rm{loc}}\left({\mathbb R}N\setminus{0}\right)$, anti-symmetric with respect to $x_1,\; x_2,\; \cdots,\; x_m$ and $|u(0)|\leq C(-1)m\partial_{1}\partial_{2}\cdot \cdot \cdot \partial_{m}(|x|{-\gamma})$ for $x_1>0,\; \cdots,\; x_m>0,$ where $C>0$ is a constant, $m\in {1,\; 2,\; \cdots,\; N},$ $0<\gamma<N$ and $0<\alpha\<2/(\gamma+m).$ This gives a local existence result with highly singular initial values. As an application, for $a=1,$ we establish new blowup criteria for $0<\alpha\leq 2/(\gamma+m)$, including the case $m=0.$ Moreover, if $(N-4)\alpha\<2,$ we prove the existence of initial values $u_0 = \lambda f,$ for which the resulting solution blows up in finite time $T_{\max}(\lambda f),$ if $\lambda\>0$ is sufficiently small. We also construct blowing up solutions with initial data $\lambda_n f$ such that $\lambda_n{[({1\over \alpha}-{\gamma+m\over 2}){-1}]}T_{\max}(\lambda_n f)$ has different finite limits along different sequences $\lambda_n\to 0$. Our result extends the known "small lambda" blow up results for new values of $\alpha$ and a new class of initial data.

Summary

We haven't generated a summary for this paper yet.