Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New type II Finite time blow-up for the energy supercritical heat equation (2006.00716v1)

Published 1 Jun 2020 in math.AP

Abstract: We consider the energy supercritical heat equation with the $(n-3)$-th Sobolev exponent \begin{equation*} \begin{cases} u_t=\Delta u+u{3},~&\mbox{ in } \Omega\times (0,T),\ u(x,t)=u|{\partial\Omega},~&\mbox{ on } \partial\Omega\times (0,T),\ u(x,0)=u_0(x),~&\mbox{ in } \Omega, \end{cases} \end{equation*} where $5\leq n\leq 7$, $\Omega=\Rn$ or $\Omega \subset \Rn$ is a smooth, bounded domain enjoying special symmetries. We construct type II finite time blow-up solution $u(x,t)$ with the singularity taking place along an $(n-4)$-dimensional {\em shrinking sphere} in $\Omega$. More precisely, at leading order, the solution $u(x,t)$ is of the sharply scaled form $$u(x,t)\approx \la{-1}(t)\frac{2\sqrt{2}}{1+\left|\frac{(r,z)-(\xi_r(t),\xi_z(t))}{\la(t)}\right|2}$$ where $r=\sqrt{x_12+\cdots+x{n-3}2}$, $z=(x_{n-2},x_{n-1},x_n)$ with $x=(x_1,\cdots,x_n)\in\Omega$. Moreover, the singularity location $$(\xi_r(t),\xi_z(t))\sim (\sqrt{2(n-4)(T-t)},z_0)~\mbox{ as }~t\nearrow T,$$ for some fixed $z_0$, and the blow-up rate $$\la(t)\sim \frac{T-t}{|\log(T-t)|2}~\mbox{ as }~t\nearrow T.$$ This is a completely new phenomenon in the parabolic setting.

Summary

We haven't generated a summary for this paper yet.