Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blowup on an arbitrary compact set for a Schödinger equation with nonlinear source term (1906.02983v1)

Published 7 Jun 2019 in math.AP

Abstract: We consider the nonlinear Schr\"odinger equation on ${\mathbb R}N $, $N\ge 1$, \begin{equation*} \partial _t u = i \Delta u + \lambda | u |\alpha u \quad \mbox{on ${\mathbb R}N $, $\alpha>0$,} \end{equation*} with $\lambda \in {\mathbb C}$ and $\Re \lambda >0$, for $H1$-subcritical nonlinearities, i.e. $\alpha >0$ and $(N-2) \alpha < 4$. Given a compact set $K \subset {\mathbb R}N $, we construct $H1$ solutions that are defined on $(-T,0)$ for some $T>0$, and blow up on $K $ at $t=0$. The construction is based on an appropriate ansatz. The initial ansatz is simply $U_0(t,x) = ( \Re \lambda ){- \frac {1} {\alpha }} (-\alpha t + A(x) ){ -\frac {1} {\alpha } - i \frac {\Im \lambda } {\alpha \Re \lambda } }$, where $A\ge 0$ vanishes exactly on $ K $, which is a solution of the ODE $u'= \lambda | u |\alpha u$. We refine this ansatz inductively, using ODE techniques. We complete the proof by energy estimates and a compactness argument. This strategy is reminiscent of~[3, 4].

Summary

We haven't generated a summary for this paper yet.