Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Discrete Gradient Line Fields on Surfaces (1712.08136v2)

Published 21 Dec 2017 in math.GT, cs.CG, and cs.DM

Abstract: A line field on a manifold is a smooth map which assigns a tangent line to all but a finite number of points of the manifold. As such, it can be seen as a generalization of vector fields. They model a number of geometric and physical properties, e.g. the principal curvature directions dynamics on surfaces or the stress flux in elasticity. We propose a discretization of a Morse-Smale line field on surfaces, extending Forman's construction for discrete vector fields. More general critical elements and their indices are defined from local matchings, for which Euler theorem and the characterization of homotopy type in terms of critical cells still hold.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.