Papers
Topics
Authors
Recent
2000 character limit reached

Arnold-Winther mixed finite elements for Stokes eigenvalue problems (1712.06816v1)

Published 19 Dec 2017 in math.NA

Abstract: This paper is devoted to study the Arnold-Winther mixed finite element method for two dimensional Stokes eigenvalue problems using the stress-velocity formulation. A priori error estimates for the eigenvalue and eigenfunction errors are presented. To improve the approximation for both eigenvalues and eigenfunctions, we propose a local post-processing. With the help of the local post-processing, we derive a reliable a posteriori error estimator which is shown to be empirically efficient. We confirm numerically the proven higher order convergence of the post-processed eigenvalues for convex domains with smooth eigenfunctions. On adaptively refined meshes we obtain numerically optimal higher orders of convergence of the post-processed eigenvalues even on nonconvex domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.