2000 character limit reached
GBDT of discrete skew-selfadjoint Dirac systems and explicit solutions of the corresponding non-stationary problems
Published 16 Dec 2017 in math.CA and math.DS | (1712.05984v1)
Abstract: Generalized B\"acklund-Darboux transformations (GBDTs) of discrete skew-selfadjoint Dirac systems have been successfully used for explicit solving of direct and inverse problems of Weyl-Titchmarsh theory. During explicit solving of the direct and inverse problems, we considered GBDTs of the trivial initial systems. However, GBDTs of arbitrary discrete skew-selfadjoint Dirac systems are important as well and we introduce these transformations in the present paper. The obtained results are applied to the construction of explicit solutions of the interesting related non-stationary systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.