Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algebraic cycles and EPW cubes

Published 16 Dec 2017 in math.AG | (1712.05983v1)

Abstract: Let $X$ be a hyperk\"ahler variety with an anti-symplectic involution $\iota$. According to Beauville's conjectural "splitting property", the Chow groups of $X$ should split in a finite number of pieces such that the Chow ring has a bigrading. The Bloch-Beilinson conjectures predict how $\iota$ should act on certain of these pieces of the Chow groups. We verify part of this conjecture for a $19$-dimensional family of hyperk\"ahler sixfolds that are "double EPW cubes" (in the sense of Iliev-Kapustka-Kapustka-Ranestad). This has interesting consequences for the Chow ring of the quotient $X/\iota$, which is an "EPW cube" (in the sense of Iliev-Kapustka-Kapustka-Ranestad).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.