Block-Krylov techniques in the context of sparse-FGLM algorithms (1712.04177v2)
Abstract: Consider a zero-dimensional ideal $I$ in $\mathbb{K}[X_1,\dots,X_n]$. Inspired by Faug`ere and Mou's Sparse FGLM algorithm, we use Krylov sequences based on multiplication matrices of $I$ in order to compute a description of its zero set by means of univariate polynomials. Steel recently showed how to use Coppersmith's block-Wiedemann algorithm in this context; he describes an algorithm that can be easily parallelized, but only computes parts of the output in this manner. Using generating series expressions going back to work of Bostan, Salvy, and Schost, we show how to compute the entire output for a small overhead, without making any assumption on the ideal $I$ other than it having dimension zero. We then propose a refinement of this idea that partially avoids the introduction of a generic linear form. We comment on experimental results obtained by an implementation based on the C++ libraries Eigen, LinBox and NTL.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.