Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently (1712.03950v1)

Published 11 Dec 2017 in cs.LG and math.OC

Abstract: We propose a family of nonconvex optimization algorithms that are able to save gradient and negative curvature computations to a large extent, and are guaranteed to find an approximate local minimum with improved runtime complexity. At the core of our algorithms is the division of the entire domain of the objective function into small and large gradient regions: our algorithms only perform gradient descent based procedure in the large gradient region, and only perform negative curvature descent in the small gradient region. Our novel analysis shows that the proposed algorithms can escape the small gradient region in only one negative curvature descent step whenever they enter it, and thus they only need to perform at most $N_{\epsilon}$ negative curvature direction computations, where $N_{\epsilon}$ is the number of times the algorithms enter small gradient regions. For both deterministic and stochastic settings, we show that the proposed algorithms can potentially beat the state-of-the-art local minima finding algorithms. For the finite-sum setting, our algorithm can also outperform the best algorithm in a certain regime.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.