Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Feature Learning for Audio Analysis (1712.03835v1)

Published 11 Dec 2017 in cs.CV

Abstract: Identifying acoustic events from a continuously streaming audio source is of interest for many applications including environmental monitoring for basic research. In this scenario neither different event classes are known nor what distinguishes one class from another. Therefore, an unsupervised feature learning method for exploration of audio data is presented in this paper. It incorporates the two following novel contributions: First, an audio frame predictor based on a Convolutional LSTM autoencoder is demonstrated, which is used for unsupervised feature extraction. Second, a training method for autoencoders is presented, which leads to distinct features by amplifying event similarities. In comparison to standard approaches, the features extracted from the audio frame predictor trained with the novel approach show 13 % better results when used with a classifier and 36 % better results when used for clustering.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.