Maximal Cohen-Macaulay tensor products (1712.03663v2)
Abstract: In this paper we are concerned with the following question: if the tensor product of finitely generated modules $M$ and $N$ over a local complete intersection domain is maximal Cohen-Macaulay, then must $M$ or $N$ be a maximal Cohen-Macaulay? Celebrated results of Auslander, Lichtenbaum, and Huneke and Wiegand, yield affirmative answers to the question when the ring considered has codimension zero or one, but the question is very much open for complete intersection domains that have codimension at least two, even open for those that are one-dimensional, or isolated singularities. Our argument exploits Tor-rigidity and proves the following, which seems to give a new perspective to the aforementioned question: if $R$ is a complete intersection ring which is an isolated singularity such that dim($R$) > codim($R$), and the tensor product $M\otimes_R N$ is maximal Cohen-Macaulay, then $M$ is maximal Cohen-Macaulay if and only if $N$ is maximal Cohen-Macaulay.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.