Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The multiproximal linearization method for convex composite problems (1712.02623v3)

Published 7 Dec 2017 in math.OC

Abstract: Composite minimization involves a collection of smooth functions which are aggregated in a nonsmooth manner. In the convex setting, we design an algorithm by linearizing each smooth component in accordance with its main curvature. The resulting method, called the Multiprox method, consists in solving successively simple problems (e.g. constrained quadratic problems) which can also feature some proximal operators. To study the complexity and the convergence of this method we are led to study quantitative qualification conditions to understand the impact of multipliers on the complexity bounds. We obtain explicit complexity results of the form $O(\frac{1}{k})$ involving new types of constant terms. A distinctive feature of our approach is to be able to cope with oracles involving moving constraints. Our method is flexible enough to include the moving balls method, the proximal Gauss-Newton's method, or the forward-backward splitting, for which we recover known complexity results or establish new ones. We show through several numerical experiments how the use of multiple proximal terms can be decisive for problems with complex geometries.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube