Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lie group classification of first-order delay ordinary differential equations (1712.02581v1)

Published 7 Dec 2017 in math-ph and math.MP

Abstract: A group classification of first-order delay ordinary differential equation (DODE) accompanied by an equation for delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs) which consists of linear DODEs and solution independent delay relations have infinite-dimensional symmetry algebras, as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension $n$, $0 \leq n \leq 3$. It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.