Papers
Topics
Authors
Recent
2000 character limit reached

Multiplicative Coevolution Regression Models for Longitudinal Networks and Nodal Attributes

Published 7 Dec 2017 in stat.ME | (1712.02497v1)

Abstract: We introduce a simple and extendable coevolution model for the analysis of longitudinal network and nodal attribute data. The model features parameters that describe three phenomena: homophily, contagion and autocorrelation of the network and nodal attribute process. Homophily here describes how changes to the network may be associated with between-node similarities in terms of their nodal attributes. Contagion refers to how node-level attributes may change depending on the network. The model we present is based upon a pair of intertwined autoregressive processes. We obtain least-squares parameter estimates for continuous-valued fully-observed network and attribute data. We also provide methods for Bayesian inference in several other cases, including ordinal network and attribute data, and models involving latent nodal attributes. These model extensions are applied to an analysis of international relations data and to data from a study of teen delinquency and friendship networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.