Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Pliable Lasso (1712.00484v4)

Published 1 Dec 2017 in stat.ME

Abstract: We propose a generalization of the lasso that allows the model coefficients to vary as a function of a general set of modifying variables. These modifiers might be variables such as gender, age or time. The paradigm is quite general, with each lasso coefficient modified by a sparse linear function of the modifying variables $Z$. The model is estimated in a hierarchical fashion to control the degrees of freedom and avoid overfitting. The modifying variables may be observed, observed only in the training set, or unobserved overall. There are connections of our proposal to varying coefficient models and high-dimensional interaction models. We present a computationally efficient algorithm for its optimization, with exact screening rules to facilitate application to large numbers of predictors. The method is illustrated on a number of different simulated and real examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube