Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using L1-Penalization (1109.4003v2)

Published 19 Sep 2011 in stat.CO, math.ST, and stat.TH

Abstract: We propose an L1-penalized algorithm for fitting high-dimensional generalized linear mixed models. Generalized linear mixed models (GLMMs) can be viewed as an extension of generalized linear models for clustered observations. This Lasso-type approach for GLMMs should be mainly used as variable screening method to reduce the number of variables below the sample size. We then suggest a refitting by maximum likelihood based on the selected variables only. This is an effective correction to overcome problems stemming from the variable screening procedure which are more severe with GLMMs. We illustrate the performance of our algorithm on simulated as well as on real data examples. Supplemental materials are available online and the algorithm is implemented in the R package glmmixedlasso.

Summary

We haven't generated a summary for this paper yet.