Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Willmore Flow of planar networks (1711.11504v1)

Published 30 Nov 2017 in math.AP

Abstract: Geometric gradient flows for elastic energies of Willmore type play an important role in mathematics and in many applications. The evolution of elastic curves has been studied in detail both for closed as well as for open curves. Although elastic flows for networks also have many interesting features, they have not been studied so far from the point of view of mathematical analysis. So far it was not even clear what are appropriate boundary conditions at junctions. In this paper we give a well-posedness result for Willmore flow of networks in different geometric settings and hence lay a foundation for further mathematical analysis. A main point in the proof is to check whether different proposed boundary conditions lead to a well posed problem. In this context one has to check the Lopatinskii--Shapiro condition in order to apply the Solonnikov theory for linear parabolic systems in H\"older spaces which is needed in a fixed point argument. We also show that the solution we get is unique in a purely geometric sense.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.