Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On the $N$th linear complexity of automatic sequences (1711.10764v1)

Published 29 Nov 2017 in math.NT

Abstract: The $N$th linear complexity of a sequence is a measure of predictability. Any unpredictable sequence must have large $N$th linear complexity. However, in this paper we show that for $q$-automatic sequences over $\mathbb{F}_q$ the converse is not true. We prove that any (not ultimately periodic) $q$-automatic sequence over $\mathbb{F}_q$ has $N$th linear complexity of order of magnitude $N$. For some famous sequences including the Thue--Morse and Rudin--Shapiro sequence we determine the exact values of their $N$th linear complexities. These are non-trivial examples of predictable sequences with $N$th linear complexity of largest possible order of magnitude.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.