Maximum-order complexity and $2$-adic complexity (2309.12769v1)
Abstract: The $2$-adic complexity has been well-analyzed in the periodic case. However, we are not aware of any theoretical results on the $N$th $2$-adic complexity of any promising candidate for a pseudorandom sequence of finite length $N$ or results on a part of the period of length $N$ of a periodic sequence, respectively. Here we introduce the first method for this aperiodic case. More precisely, we study the relation between $N$th maximum-order complexity and $N$th $2$-adic complexity of binary sequences and prove a lower bound on the $N$th $2$-adic complexity in terms of the $N$th maximum-order complexity. Then any known lower bound on the $N$th maximum-order complexity implies a lower bound on the $N$th $2$-adic complexity of the same order of magnitude. In the periodic case, one can prove a slightly better result. The latter bound is sharp which is illustrated by the maximum-order complexity of $\ell$-sequences. The idea of the proof helps us to characterize the maximum-order complexity of periodic sequences in terms of the unique rational number defined by the sequence. We also show that a periodic sequence of maximal maximum-order complexity must be also of maximal $2$-adic complexity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.