Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Almost Sure Semicircle Law for Random Band Matrices with Dependent Entries (1711.10196v2)

Published 28 Nov 2017 in math.PR

Abstract: We analyze the empirical spectral distribution of random periodic band matrices with correlated entries. The correlation structure we study was first introduced in 2015 by Hochst\"attler, Kirsch and Warzel, who named their setup "almost uncorrelated" and showed convergence to the semicircle distribution in probability. We strengthen their results which turn out to be also valid almost surely. Moreover, we extend them to band matrices. Sufficient conditions for convergence to the semicircle distribution both in probability and almost surely are provided. In contrast to convergence in probability, almost sure convergence seems to require a minimal growth rate for the bandwidth. Examples that fit our general setup include Curie-Weiss distributed, correlated Gaussian, and as a special case, independent entries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube