Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Family learning: nonparametric statistical inference with parametric efficiency (1711.10028v1)

Published 27 Nov 2017 in stat.ME

Abstract: Hypothesis testing and other statistical inference procedures are most efficient when a reliable low-dimensional parametric family can be specified. We propose a method that learns such a family when one exists but its form is not known a priori, by examining samples from related populations and fitting a low-dimensional exponential family that approximates all the samples as well as possible. We propose a computationally efficient spectral method that allows us to carry out hypothesis tests that are valid whether or not the fit is good, and recover asymptotically optimal power if it is. Our method is computationally efficient and can produce substantial power gains in simulation and real-world A/B testing data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.