Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometrical Structures for Classical and Quantum Probability Spaces (1711.09774v1)

Published 27 Nov 2017 in math-ph and math.MP

Abstract: On the affine space containing the space $\mathcal{S}$ of quantum states of finite-dimensional systems there are contravariant tensor fields by means of which it is possible to define Hamiltonian and gradient vector fields encoding relevant geometrical properties of $\mathcal{S}$. Guided by Dirac's analogy principle, we will use them as inspiration to define contravariant tensor fields, Hamiltonian and gradient vector fields on the affine space containing the space of fair probability distributions on a finite sample space and analyse their geometrical properties. Most of our considerations will be dealt with for the simple example of a three-level system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.