Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions
Abstract: We consider Dirichlet exterior value problems related to a class of non-local Schr\"odinger operators, whose kinetic terms are given in terms of Bernstein functions of the Laplacian. We prove elliptic and parabolic Aleksandrov-Bakelman-Pucci type estimates, and as an application obtain existence and uniqueness of weak solutions. Next we prove a refined maximum principle in the sense of Berestycki-Nirenberg-Varadhan, and a converse. Also, we prove a weak anti-maximum principle in the sense of Cl\'ement-Peletier, valid on compact subsets of the domain, and a full anti-maximum principle by restricting to fractional Schr\"odinger operators. Furthermore, we show a maximum principle for narrow domains, and a refined elliptic ABP-type estimate. Finally, we obtain Liouville-type theorems for harmonic solutions and for a class of semi-linear equations. Our approach is probabilistic, making use of the properties of subordinate Brownian motion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.