Papers
Topics
Authors
Recent
2000 character limit reached

Efficient low-dimensional approximation of continuous attractor networks

Published 21 Nov 2017 in q-bio.NC | (1711.08032v1)

Abstract: Continuous "bump" attractors are an established model of cortical working memory for continuous variables and can be implemented using various neuron and network models. Here, we develop a generalizable approach for the approximation of bump states of continuous attractor networks implemented in networks of both rate-based and spiking neurons. The method relies on a low-dimensional parametrization of the spatial shape of firing rates, allowing to apply efficient numerical optimization methods. Using our theory, we can establish a mapping between network structure and attractor properties that allows the prediction of the effects of network parameters on the steady state firing rate profile and the existence of bumps, and vice-versa, to fine-tune a network to produce bumps of a given shape.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.