2000 character limit reached
Numerical Integration as a Finite Matrix Approximation to Multiplication Operator (1711.07930v7)
Published 21 Nov 2017 in math.NA
Abstract: In this article, numerical integration is formulated as evaluation of a matrix function of a matrix that is obtained as a projection of the multiplication operator on a finite-dimensional basis. The idea is to approximate the continuous spectral representation of a multiplication operator on a Hilbert space with a discrete spectral representation of a Hermitian matrix. The Gaussian quadrature is shown to be a special case of the new method. The placement of the nodes of numerical integration and convergence of the new method are studied.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.