Power Diagram Detection with Applications to Information Elicitation (1711.06207v1)
Abstract: Power diagrams, a type of weighted Voronoi diagrams, have many applications throughout operations research. We study the problem of power diagram detection: determining whether a given finite partition of $\mathbb{R}d$ takes the form of a power diagram. This detection problem is particularly prevalent in the field of information elicitation, where one wishes to design contracts to incentivize self-minded agents to provide honest information. We devise a simple linear program to decide whether a polyhedral cell decomposition can be described as a power diagram. Further, we discuss applications to property elicitation, peer prediction, and mechanism design, where this question arises. Our model is able to efficiently decide the question for decompositions of $\mathbb{R}d$ or of a restricted domain in $\mathbb{R}d$. The approach is based on the use of an alternative representation of power diagrams, and invariance of a power diagram under uniform scaling of the parameters in this representation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.