Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Solution Uniqueness of Convex Piecewise Affine Functions Based Optimization with Applications to Constrained $\ell_1$ Minimization (1711.05882v1)

Published 16 Nov 2017 in math.OC

Abstract: In this paper, we study the solution uniqueness of an individual feasible vector of a class of convex optimization problems involving convex piecewise affine functions and subject to general polyhedral constraints. This class of problems incorporates many important polyhedral constrained $\ell_1$ recovery problems arising from sparse optimization, such as basis pursuit, LASSO, and basis pursuit denoising, as well as polyhedral gauge recovery. By leveraging the max-formulation of convex piecewise affine functions and convex analysis tools, we develop dual variables based necessary and sufficient uniqueness conditions via simple and yet unifying approaches; these conditions are applied to a wide range of $\ell_1$ minimization problems under possible polyhedral constraints. An effective linear program based scheme is proposed to verify solution uniqueness conditions. The results obtained in this paper not only recover the known solution uniqueness conditions in the literature by removing restrictive assumptions but also yield new uniqueness conditions for much broader constrained $\ell_1$-minimization problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube