Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Origami: Transversal Gates for Quantum Computation and Measurement of Topological Order

Published 15 Nov 2017 in quant-ph, cond-mat.quant-gas, cond-mat.str-el, and hep-th | (1711.05752v3)

Abstract: In topology, a torus remains invariant under certain non-trivial transformations known as modular transformations. In the context of topologically ordered quantum states of matter, these transformations encode the braiding statistics and fusion rules of emergent anyonic excitations and thus serve as a diagnostic of topological order. Moreover, modular transformations of higher genus surfaces, e.g. a torus with multiple handles, can enhance the computational power of a topological state, in many cases providing a universal fault-tolerant set of gates for quantum computation. However, due to the intrusive nature of modular transformations, which abstractly involve global operations and manifold surgery, physical implementations of them in local systems have remained elusive. Here, we show that by folding manifolds, modular transformations can be applied in a single shot by independent local unitaries, providing a novel class of transversal logic gates for fault-tolerant quantum computation. Specifically, we demonstrate that multi-layer topological states with appropriate boundary conditions and twist defects allow modular transformations to be effectively implemented by a finite sequence of local SWAP gates between the layers. We further provide methods to directly measure the modular matrices, and thus the fractional statistics of anyonic excitations, providing a novel way to directly measure topological order.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.