Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Non-overlapping Convolutional Neural Networks with Multiple Kernels

Published 8 Nov 2017 in cs.LG, cs.DS, and stat.ML | (1711.03440v1)

Abstract: In this paper, we consider parameter recovery for non-overlapping convolutional neural networks (CNNs) with multiple kernels. We show that when the inputs follow Gaussian distribution and the sample size is sufficiently large, the squared loss of such CNNs is $\mathit{~locally~strongly~convex}$ in a basin of attraction near the global optima for most popular activation functions, like ReLU, Leaky ReLU, Squared ReLU, Sigmoid and Tanh. The required sample complexity is proportional to the dimension of the input and polynomial in the number of kernels and a condition number of the parameters. We also show that tensor methods are able to initialize the parameters to the local strong convex region. Hence, for most smooth activations, gradient descent following tensor initialization is guaranteed to converge to the global optimal with time that is linear in input dimension, logarithmic in precision and polynomial in other factors. To the best of our knowledge, this is the first work that provides recovery guarantees for CNNs with multiple kernels under polynomial sample and computational complexities.

Citations (75)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.