Papers
Topics
Authors
Recent
2000 character limit reached

Bubble nucleation in disordered Landau-Ginzburg model (1711.03408v1)

Published 9 Nov 2017 in cond-mat.stat-mech

Abstract: In this paper we investigate bubble nucleation in a disordered Landau-Ginzburg model. First we adopt the standard procedure to average over the disordered free energy. This quantity is represented as a series of the replica partition functions of the system. Using the saddle-point equations in each replica partition function, we discuss the presence of a spontaneous symmetry breaking mechanism. The leading term of the series is given by a large-N Euclidean replica field theory. Next, we consider finite temperature effects. Below some critical temperature, there are N real instantons-like solutions in the model. The transition from the false to the true vacuum for each replica field is given by the nucleation of a bubble of the true vacuum. In order to describe these irreversible processes of multiple nucleation, going beyond the diluted instanton approximation, an effective model is constructed, with one single mode of a bosonic field interacting with a reservoir of N identical two-level systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.