Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A random walk approach to linear statistics in random tournament ensembles (1711.02072v1)

Published 6 Nov 2017 in math.PR, math-ph, and math.MP

Abstract: We investigate the linear statistics of random matrices with purely imaginary Bernoulli entries of the form $H_{pq} = \overline{H}{qp} = \pm i$, that are either independently distributed or exhibit global correlations imposed by the condition $\sum{q} H_{pq} = 0$. These are related to ensembles of so-called random tournaments and random regular tournaments respectively. Specifically, we construct a random walk within the space of matrices and show that the induced motion of the first $k$ traces in a Chebyshev basis converges to a suitable Ornstein-Uhlenbeck process. Coupling this with Stein's method allows us to compute the rate of convergence to a Gaussian distribution in the limit of large matrix dimension.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.