Self-dual form of Ruijsenaars-Schneider models and ILW equation with discrete Laplacian (1711.01036v2)
Abstract: We discuss a self-dual form or the B\"acklund transformations for the continuous (in time variable) ${\rm gl}_N$ Ruijsenaars-Schneider model. It is based on the first order equations in $N+M$ complex variables which include $N$ positions of particles and $M$ dual variables. The latter satisfy equations of motion of the ${\rm gl}_M$ Ruijsenaars-Schneider model. In the elliptic case it holds $M=N$ while for the rational and trigonometric models $M$ is not necessarily equal to $N$. Our consideration is similar to the previously obtained results for the Calogero-Moser models which are recovered in the non-relativistic limit. We also show that the self-dual description of the Ruijsenaars-Schneider models can be derived from complexified intermediate long wave equation with discrete Laplacian be means of the simple pole ansatz likewise the Calogero-Moser models arise from ordinary intermediate long wave and Benjamin-Ono equations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.