Papers
Topics
Authors
Recent
2000 character limit reached

Quotients of graph operators by symmetry representations (1711.00918v4)

Published 2 Nov 2017 in math-ph, math.MP, math.RT, and math.SP

Abstract: A finite dimensional operator that commutes with some symmetry group admits quotient operators, which are determined by the choice of associated representation. Taking the quotient isolates the part of the spectrum supporting the chosen representation and reduces the complexity of the spectral problem. Yet, such a quotient operator is not uniquely defined. Here we present a computationally simple way of choosing a special basis for the space of intertwiners, allowing us to construct a quotient that reflects the structure of the original operator. This quotient construction generalizes previous definitions for discrete graphs, which either dealt with restricted group actions or only with the trivial representation. We also extend the method to quantum graphs, which simplifies previous constructions within this context, answers an open question regarding self-adjointness and offers alternative viewpoints in terms of a scattering approach. Applications to isospectrality are discussed, together with numerous examples and comparisons with previous results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.