Brauer-Manin obstructions on degree 2 K3 surfaces
Abstract: We analyze the Brauer-Manin obstruction to rational points on the K3 surfaces over $\mathbb{Q}$ given by double covers of $\mathbb{P}2$ ramified over a diagonal sextic. After finding an explicit set of generators for the geometric Picard group of such a surface, we find two types of infinite families of counterexamples to the Hasse principle explained by the algebraic Brauer-Manin obstruction. The first type of obstruction comes from a quaternion algebra, and the second type comes from a 3-torsion element of the Brauer group, which gives an affirmative answer to a question asked by Ieronymou and Skorobogatov.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.