Complex Analysis of Real Functions V: The Dirichlet Problem on the Plane (1710.10947v3)
Abstract: In the context of the correspondence between real functions on the unit circle and inner analytic functions within the open unit disk, that was presented in previous papers, we show that the constructions used to establish that correspondence lead to very general proofs of existence of solutions of the Dirichlet problem on the plane. At first, this establishes the existence of solutions for almost arbitrary integrable real functions on the unit circle, including functions which are discontinuous and unbounded. The proof of existence is then generalized to a large class of non-integrable real functions on the unit circle. Further, the proof of existence is generalized to real functions on a large class of other boundaries on the plane, by means of conformal transformations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.