Papers
Topics
Authors
Recent
2000 character limit reached

Weyl's Theorem for pairs of commuting hyponormal operators (1710.10680v1)

Published 29 Oct 2017 in math.FA

Abstract: Let $\mathbf{T}$ be a pair of commuting hyponormal operators satisfying the so-called quasitriangular property $$ \textrm{dim} \; \textrm{ker} \; (\mathbf{T}-\boldsymbol\lambda) \ge \textrm{dim} \; \textrm{ker} \; (\mathbf{T} - {\boldsymbol\lambda})*), $$ for every $\boldsymbol\lambda$ in the Taylor spectrum $\sigma(\mathbf{T})$ of $\mathbf{T}$. We prove that the Weyl spectrum of $\mathbf{T}$, $\omega(\mathbf{T})$, satisfies the identity $$ \omega(\mathbf{T})=\sigma(\mathbf{T}) \setminus \pi_{00}(\mathbf{T}), $$ where $\pi_{00}(\mathbf{T})$ denotes the set of isolated eigenvalues of finite multiplicity. Our method of proof relies on a (strictly $2$-variable) fact about the topological boundary of the Taylor spectrum; as a result, our proof does not hold for $d$-tuples of commuting hyponormal operators with $d>2$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.