Papers
Topics
Authors
Recent
2000 character limit reached

A partial Laplacian as an infinitesimal generator on the Wasserstein space (1710.10536v1)

Published 28 Oct 2017 in math.AP

Abstract: We study stochastic processes on the Wasserstein space, together with their infinitesimal generators. One of these processes is modeled after Brownian motion and plays a central role in our work. Its infinitesimal generator defines a partial Laplacian on the space of Borel probability measures, and we use it to define heat flow on the Wasserstein space. We verify a distinctive smoothing effect of this flow for a particular class of initial conditions. To this end, we will develop a theory of Fourier analysis and conic surfaces in metric spaces. We note that the use of the infinitesimal generators has been instrumental in proving various theorems for Mean Field Games, and we anticipate they will play a key role in future studies of viscosity solutions of PDEs in the Wasserstein space.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.