Papers
Topics
Authors
Recent
Search
2000 character limit reached

Neural Stain-Style Transfer Learning using GAN for Histopathological Images

Published 23 Oct 2017 in cs.CV, cs.AI, and cs.LG | (1710.08543v2)

Abstract: Performance of data-driven network for tumor classification varies with stain-style of histopathological images. This article proposes the stain-style transfer (SST) model based on conditional generative adversarial networks (GANs) which is to learn not only the certain color distribution but also the corresponding histopathological pattern. Our model considers feature-preserving loss in addition to well-known GAN loss. Consequently our model does not only transfers initial stain-styles to the desired one but also prevent the degradation of tumor classifier on transferred images. The model is examined using the CAMELYON16 dataset.

Citations (87)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.