Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A General Method for Finding the Optimal Threshold in Discrete Time (1710.08250v2)

Published 23 Oct 2017 in math.PR

Abstract: We develop an approach for solving one-sided optimal stopping problems in discrete time for general underlying Markov processes on the real line. The main idea is to transform the problem into an auxiliary problem for the ladder height variables. In case that the original problem has a one-sided solution and the auxiliary problem has a monotone structure, the corresponding myopic stopping time is optimal for the original problem as well. This elementary line of argument directly leads to a characterization of the optimal boundary in the original problem: The optimal threshold is given by the threshold of the myopic stopping time in the auxiliary problem. Supplying also a sufficient condition for our approach to work, we obtain solutions for many prominent examples in the literature, among others the problems of Novikov-Shiryaev, Shepp-Shiryaev, and the American put in option pricing under general conditions. As a further application we show that for underlying random walks (and L\'evy processes in continuous time), the reward functions $g$ leading to one-sided stopping problems are exactly the monotone and log-concave functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube