Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Progressive Learning for Systematic Design of Large Neural Networks (1710.08177v1)

Published 23 Oct 2017 in cs.NE, cs.CV, cs.LG, and stat.ML

Abstract: We develop an algorithm for systematic design of a large artificial neural network using a progression property. We find that some non-linear functions, such as the rectifier linear unit and its derivatives, hold the property. The systematic design addresses the choice of network size and regularization of parameters. The number of nodes and layers in network increases in progression with the objective of consistently reducing an appropriate cost. Each layer is optimized at a time, where appropriate parameters are learned using convex optimization. Regularization parameters for convex optimization do not need a significant manual effort for tuning. We also use random instances for some weight matrices, and that helps to reduce the number of parameters we learn. The developed network is expected to show good generalization power due to appropriate regularization and use of random weights in the layers. This expectation is verified by extensive experiments for classification and regression problems, using standard databases.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube