Papers
Topics
Authors
Recent
2000 character limit reached

A hierarchical Bayesian model for measuring individual-level and group-level numerical representations (1710.08171v1)

Published 23 Oct 2017 in stat.AP

Abstract: A popular method for indexing numerical representations is to compute an individual estimate of a response time effect, such as the SNARC effect or the numerical distance effect. Classically, this is done by estimating individual linear regression slopes and then either pooling the slopes to obtain a group-level slope estimate, or using the individual slopes as predictors of other phenomena. In this paper, I develop a hierarchical Bayesian model for simultaneously estimating group-level and individual-level slope parameters. I show examples of using this modeling framework to assess two common effects in numerical cognition: the SNARC effect and the numerical distance effect. Finally, I demonstrate that the Bayesian approach can result in better measurement fidelity than the classical approach, especially with small samples.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.