Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bulk-boundary correspondance for Sturmian Kohmoto like models (1710.07681v1)

Published 20 Oct 2017 in math-ph, cond-mat.other, and math.MP

Abstract: We consider one dimensional tight binding models on $\ell2(\mathbb Z)$ whose spatial structure is encoded by a Sturmian sequence $(\xi_n)_n\in {a,b}\mathbb Z$. An example is the Kohmoto Hamiltonian, which is given by the discrete Laplacian plus an onsite potential $v_n$ taking value $0$ or $1$ according to whether $\xi_n$ is $a$ or $b$. The only non-trivial topological invariants of such a model are its gap-labels. The bulk-boundary correspondence we establish here states that there is a correspondence between the gap label and a winding number associated to the edge states, which arises if the system is augmented and compressed onto half space $\ell2(\mathbb N)$. This has been experimentally observed with polaritonic waveguides. A correct theoretical explanation requires, however, first a smoothing out of the atomic motion via phason flips. With such an interpretation at hand, the winding number corresponds to the mechanical work through a cycle which the atomic motion exhibits on the edge states.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.