Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The disjointness of stabilizer codes and limitations on fault-tolerant logical gates (1710.07256v1)

Published 19 Oct 2017 in quant-ph

Abstract: Stabilizer codes are a simple and successful class of quantum error-correcting codes. Yet this success comes in spite of some harsh limitations on the ability of these codes to fault-tolerantly compute. Here we introduce a new metric for these codes, the disjointness, which, roughly speaking, is the number of mostly non-overlapping representatives of any given non-trivial logical Pauli operator. We use the disjointness to prove that transversal gates on error-detecting stabilizer codes are necessarily in a finite level of the Clifford hierarchy. We also apply our techniques to topological code families to find similar bounds on the level of the hierarchy attainable by constant depth circuits, regardless of their geometric locality. For instance, we can show that symmetric 2D surface codes cannot have non-local constant depth circuits for non-Clifford gates.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.