Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spatial random field models based on Lévy indicator convolutions (1710.06826v1)

Published 18 Oct 2017 in stat.ME

Abstract: Process convolutions yield random fields with flexible marginal distributions and dependence beyond Gaussianity, but statistical inference is often hampered by a lack of closed-form marginal distributions, and simulation-based inference may be prohibitively computer-intensive. We here remedy such issues through a class of process convolutions based on smoothing a (d+1)-dimensional L\'evy basis with an indicator function kernel to construct a d-dimensional convolution process. Indicator kernels ensure univariate distributions in the L\'evy basis family, which provides a sound basis for interpretation, parametric modeling and statistical estimation. We propose a class of isotropic stationary convolution processes constructed through hypograph indicator sets defined as the space between the curve (s,H(s)) of a spherical probability density function H and the plane (s,0). If H is radially decreasing, the covariance is expressed through the univariate distribution function of H. The bivariate joint tail behavior in such convolution processes is studied in detail. Simulation and modeling extensions beyond isotropic stationary spatial models are discussed, including latent process models. For statistical inference of parametric models, we develop pairwise likelihood techniques and illustrate these on spatially indexed weed counts in the Bjertop data set, and on daily wind speed maxima observed over 30 stations in the Netherlands.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube